g AD 703 537
| AN APPROACH TO SEMI-MARKOV PROCESSES
; Stephen Saperstone
1 Center for Naval Analyses
[ﬁ Arlington, Virginia
23 March 1970

ri Distributed ... ‘to foster, serve
i and promote the nation’s
4 economic development

and technological
K 1

advencement.’

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION

o co0 U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

[ ]
LI X 2] L J
000+0 O

This document has been approved for public release and sale.




AD7 03537

TFFA .
T TG TR AR

AN APPROACH TO SEMI-MARKOV PROCESSES

by
Stephen Saperstone

Professional Paper No. 25
CENTER FOR NAVAL ANAL YSES

March 23, 1970

von ey
.

Reproduced by thy

CLEARENGHOUSE
for Federal Scianhifie &, Technics)
triormation Springhetd Va 221

T EEAWERL M @




T

T~

g racaveam i v

T

2 e R s

S W I RTNNYEES  LorT A€, F A T T A R A R TS T T e e e
s RN FM IR NRT T I RTLTRANEE en e S ’ ! Y
-
/:'
Y
&

The ideas expressed in this papei are those of the authors.
The paper does not necessarily represent the vicws of either
the Center for Naval Analyses, the United States Navy or any
other sponsoring agency. It has been reproduced by CNA as a
courtesy to the authors, under he CNA Professiaznal
Development Program.

TR R E Y TR Y

LR RS Y

T T T g e




S et TR ks 5 v s b e e d 2R uYS A s @ SWRT WA € AR -
oo o R R TR TR ST RN DT T T TR T IR

PR AR

AN APPROACH TO SEMI-MARKOV PROCESSES

CNA Professional Paper No. 25

by

- T
SN YR O 7 4o

Stephen Saperstone, OEG

PN

March 1970

o Ko rETTeY
Ry

P
¥

———c R i o v A

i
»




PREFACE

This paper reports on some of the mathematical results that
the author obtained while seeking to refine the Markov chain
models ,used in air ASW tactical analyses in numerous studies
done at CNA. 1In an effort to take into account the waiting time
in each state prior to transition, a non-Markov process was
postulated. Subsequent investigation showed the process to be
a reformulation of a semi-Markov proccess (c.f., references (2),
(b), and (c)).

In the present case, the equations for the flow resemble a
multi-dimensional renewal process. The behavior of the system is
described by a probability density which characterizes the pro-
cess at any time t > 0, given that the states of the process were
defined at time t = 0. It is shown in the special steady state
case that the probability distribution yields results which are
equivalent to those previously given (references (a}!, (b), (c)).

The auvthor wishes tc thank Drs. J. Tysoa, J. bram, J. Kadane,
and J. Howe for their valuable suggestions n certain aspects of

the problem discussed in this paper.
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INTRODUCTION
In dealing with a staticnary Markov process with discrete

i ¢ . N

state space i , we observe that the transition from state
k=1

Ei to state Ej (for i # j) does not depend upon the amount of
time the process has spent in state Ei‘ In fact, it follows as

a consequence of the Markovian assumption that if at any time the
process is observed to be in state Ei' and in addition, it is ob-
served that the process next makes a transition‘UDstateEﬁ, the

random variable T‘j’ denoting the time the process spends in E,
ES

before moving to Ej’ is exponentially distributed. It follows
that the probability of making the transition to Ej during the infinitesimal
interval [Tij' Tij + At) is just proportional to At, and does not
depend on the amount of time, Tij' already spent in Ei'
Systems arise though, in which the probability of transition
from E; to Ej does depend on the time already spent in
Ei’ That is, if it is known that the process has been in Ei for
exactly the last 7 units of time, the probability that a transition
to Ej will occur in the next AT units of time depends not only on

j and AT but cn 7 as well. We express this functionally as

wij(T)AT - Prob}transxtlon from Ei to Ej during {process has been lné (1)

\the time interval f{r, 7 + AT) Ei throughout [0, )

e A NI s M. RSN




et 1 Eh R i 2} St E LT

AR i

LA SR

JR - — R e AR Lr DR A c SR STTE O Tt e e i
o . . e AT AT Ty 2 TR TR R v 5 o o E T R T A B R TR IR TR TR SO A Ly DR S op SO IS TR G =
A, e e ey o i s g P achsaive, =X SURANNN A SN S S

-

With a knowledge of these functions for all i,j plus a description
of the initial states {at time t = 0), we can determine explicitly

the condition of the process at any time t.

DEFINITION OF THE STATES

In order to make our process Markovian, we enlarge our state
space. In essence wWe consider the time spent in
state as part of the characterization of the state. More formally,
we: proceed as follows. Let El' E2, ey EN denote the finite num-~
ber of states of our original problem. We call these states
elementary from now on. Now define a new set of states as {ollows.
Each state is characterized by an ordered pair (i,~) where i is
an integer 1 < i s N, and 7 is a non-negative real number. Let $
denote the set of all these states. We call S the modified set of
states. Then for the process to be in the modified state (i,7)
at time t means that the process is in the elementary state Ei at
time t and has been there for exactly the last 7 units of time.
It follows from this that two modified states (k,7v) and (j.1)
are the same if and only if k = j and A = 7. We can represent

S pictoriallily by the following diagram consisting of N half

lines.
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A typical sequence of transitions, starting frcm the elementary

state E,, at time t = 0 might look like

One may think of this process as operating as follows.
There is an "epoch clock" which is initialized at time t = 0

upon the start of the process, say in state Ei . This "epoch
o

clock" keeps advancing in t as the prccess continues. As tlie pro-
-N

cess transfers amongst the clementary states {F.} . th2 "state
i=1
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clock” is initialized at time 7 = 0 whenever an elementary state
is entered. The "state clock" keeps track of the time spent, 7,

in tne elementary state E, until transition, and is reset at

T = 0 upon entering a new elementary state, EJ.

Thus, the sequence of transitions illustrated above can be

represented in an "epoch clecck" scale by
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where ’j represents the amount of time spent in the jth elementary
state, and j now refers tc the orcder in which the elementary
states are visited.

: vle observe now that our prccess with its modified states is

Markovian. All the previous history needed to make a transition

r—
« e,

from the el=mentary state Ei having been there * units of time is

i

? incorporated into the modified s:ate {i,-).

b

§ in general, civen that the process is in (L,7) at time t,

% the diagram below indicates the possible transitions the process
&

:

E mav make by time t + ft.
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From equation (1), we see that the probability of transi-
tion from (i,r) to (j,0) is given by wij(T)AT. Furthermore, we
assume that the probabili:y of transition from (i,T) to

(1, 7 + AT) is given by

wii(T)AT =1 - E\ wij(T)AT (2)

THE GENEKRALIZED CHAPMAN-KOLMOGOROV EQUATIONS FOR THE SEMI-MARKOV
PROCESS

In accordance with the definition of the set of modified
states S, let (X,T)t be a 2-dimensional random variable, where
X is discrete and T is continuous. In pz rticular, X takes on
the values 1, 2, ..., N and T is a non- .gative real number.
For a given epoch time t > 0, we wish to determine the probability
density function for (X,T)t. We denote it by ﬂj(f.t) for

1l < j < N, where

8(7, ©)d7 - Prov {x = §, TS T< Tebr

t}. (3)

Eome
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Now consider the possible (single) transitions during a time

q interval [t, t + At) for the cases (a) T >o ard (b) 7 =0

T2 H i ) ( = .n
(a) 7T >0: If at time t + At, (X, T)t+At (3, 7 + at),
then at time t we must have had that
X, T)t = (j, 7) (for sufficiently small Ac).

Thus we have

'j(”r + O, t+ AOL) = ¢j(7, t)l:l - ; ij(T)At] + o(6t)
k#J .

which yields the partial differential equation

X aﬁj(T, ﬁ) 5¢J(T: t') (4)
'81 + 5t = - WJ(T)¢j(T: t)
where
WJ(T) = Z ka(T), (5)
k#J
- 8
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(b) 7 = 0: This is the case in which the process just
entered the elementary state Ej during the
time interval, lt, t + At). So if at time
t, (x.'I')t = (i,s) for some i and s, then at
time t + At, (X'T)t+At = (j,0). Thus the
probability that (X,T)t has the value (j,0)
during the time interval Yt, t + At) is

given by
¢j(0.t)At + o(At).

On the other hand since the transition to (j,0) can arise
from any (i,s) # (3,0), we have for the probability that

(X,T)t = (j,0) during [t, t + At) the relation

t4+At
ﬁi(s,t)wij(s)Atds.

L
i#3

Equating the last two expressions and letting At - 0 we
get for 1 < j s Nand t >0

t
g,(0,¢t) = z: f B, (s, t)w, (s)ds. (6)
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Actually this equation is incomplete. It provides no con-
tribution for an initial distribution (at t =

0) for the process.
So let ﬁj denote the probability that the process is initial.y

in the elementary state E.; that is,

jte=o0}.
N
It follows that ? ¢i = 1. Now let m(t) be the function
=1
1, t=20
n(t) =
0, t#0

The complete expression for ¢j(0,t) becomes

t

g.(0,t) = ?‘ P 8. (s,t)w..(s)ds + #.n(t) (7)
] = vg * 1) |
it]
for all t 2 0.
it can be shown that the solution to equation (4) is
-w. (T)
¢j(7.t) = Hj(t - T)e (8)
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for 0 < 7 £ t, where

.
wj(T) = J"O W (s)ds (9)

and Hj is an arbitrary differentiable function. We choose Hj
so that it is consistant with equation (6). 1In particular we

define
Hj (t) = g.(0,t). (10)

We can interxpret Hj(t) as the probability density that the

process just enters Ej at time t.

THE WAITING TIME DISTRIBUTIONS
-W.(7)
Let us now examine the term e ° in equation (8). If T.

is a random variable which denotes the time the process waits in

state Ej before leaving for some other state, we define

Pj(v) = Prob {Tj < T} .

11
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We assume that Pj(O) = 0. and that the process must eventually

leave state E;. Hence lim Pj(t) = 3. Then since wj(T)AT is the
t—am

probability that the process is in Ej during the interval

{#, T + A7), conditioned on being in Ej during 10,7), we find

Prob {f <T, <7+ 51}

wj(T)AT m—r {Tj =3

T - T
Pj( + 47) Pj( )

1 - p.(7)
3
If the distribution function Pj(7) is continuous, then we get upon
letting &7 - 0,

dPi(T)
w. (T)d? = - (ll)
J 1 - Pj(T)

Solving equation (1ll) for Pj(T) we have
W, (1)
Po(r) =1-e I, (12)

where Wj(r) is given by equation (9).

12
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~W. (1)
Thus e - represents the probability that the process upon

entering state Ej remains there for at least 7 units of time.
Furthermore,

' "W,(T)
P.(7) w.(1)e 3 (13)
] J

is the probability density for the random variable Tj {where the

prime denotes differentiation).

Upon substitution (of equations (8) and (10)) into egquation (7) we get

< ’t -Wi(s)
Hj () = A Hi(t - s)wij (s)e ds + ¢jr(t) (14)
i#j
for 1 s j € N. Setting
W, (s)
qij(s; = wij(s)e (15)

tor 1 s i, j s N, i # j and substituting into equation (14) we
have
H. t‘ = H. t - 8 v e d + N t . 1
58 Z’ 'y 3 ( )a; ; (s)ds gn(e) (16)
i#tj

13
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Now consider tbhe term qij(s). Then i

qij(S)As = wij(s)['l - Pi(s)] As

v
R L

X =i, X = 3
° ores Xv=i} ng:i 1
Prob { and Xr = i or j . Prob
s

i 0 s v <« 0 £vcs
; for s < r < s +4s

3 ’ = i = 3
‘ Xs i, Xsﬂ\s 3 L
I = Prob / and X =1orj
I for s < r < s + As
\
= probability that the process makes a direct transition

from Ei to Ej during the interval [s, s + As). So

]

=
0

is the probability that the process, if in Ei at time s = 0,

eventually jumps to Lj. Since we require that the process must

eventually leave Ei for some other state, it follows that

q.. = 0. We note that
11

E 14
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If we denote by Q the matrix of trarsition probabilities qij'

RS ET N A

r N
for 1 s i, 3j < N, then the set of elementary states <\33 along
i=1

wts

. with the stochastic matrix Q define a Markov chain. Henceinrth

NERT

we assume that this is an irreducible chain.

Now suppose Tij denotes the random variable representing the

time the process waits in Ei before leaving for Ej(j #1i). (of

course this assumes prior knowledge of a transition to Ei') Then

-

the conditional probability density for Tij' conditioned on the

process making a transition from Ei to Ej is given by

-r — —*—l
T;j(") = qu qi.j(x)' (18)

e . — A et N -
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We make the following assumption concerning this density:
the mean time Eij defined by
o«

'{ij = Jo x 1ty 5(x)ax (19)

is finite.
The following relationship is evident from the waiting
time densities of equation (18). 1If E; denotes the mean waiting

time in state Ei' then since by definition

@x

T, = I dei(x)
- 0

and since

we have

(2¢)

b e S
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We note here that the transition probabilities qij and the
conditional waiting time distributions tij{x) are exactly the
quantities postulated in references (c), (d), and (e). It follows
from this that the transition mechanism given by eguation (1) is
equivalent to that given in the references just cited. For
a transition matrix Q = (qij) and conditional waiting time den-

sities tij(x), there corresponds a unique wij(x). In fact

St %
v () = w'g®
*d 1- Pi(x)

Conversely, the transition function wijlx) uniquely deter-

mines the guantities qij and tij(x) as we have seen above.

SOLUTION OF THE EQUATIONS FOR THE SEMI-MARFKF™V PROCESS

Equations (8) and (16) are suff:cient to dctermire each
Gj(7, t). Standard theorems of differential equations guarantee
the existence and uniqueness of Hj(t). One of thes: theorems,
the Picard theorem of successive approximations, can be applied to

develop an algorithm for the computation of Hj(t).*

* Besides formulating an algorithm for sclution, we introduce the
approximation procedure at this point in order to display equation

(23) (to follow). This is needed in a2 later section.

17
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Then

To fatilitate this, we put equation (16) in vector

o ‘zxr:(:} "5—9.(7') - = -

;(-‘ = 3.21{:) v ‘523{."’) - T =
4 ? L4
H ) 4 1 4
t T t

;2:‘,:) ‘!:ﬁ(:) C'IB(:) ==
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form.
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We proceed towards the solution as follows. Let L0, t]1 he

the interval over which we want to determine H. Let

P = {to =0, ty, by, ey b, L 1,}

be a partition of (0, t] with norm A. What we shall do is to

(k)

generate a sequence of functions |{ H(k)}, each H being defined

on the points of the partition P. For sufficiently small A as

k -+ », the sequence {H(ki} will converge uniformly to H on

(0, t]. 1Initially let H(O)(tj) = ¢ for all j =0, 1, 2, ..., n.
Next set
(1) i
1 0 f‘ O) - =
H (bj)—"o 7ty - s)als)das +n(t;)p.
Thus
T,
'((l) L o J
3 {LJ) = ¢°IO Q(s)ds +f‘(tj)¢, (22)
19
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Similarly set

t.
k1 pd (k
B0 L T B - s)a(s)as + mie, )8, (23)
o O J ©
k .
Phus from equation (23) if we know Q(s) and H( )(s) at all points
of the partition P, H(K+1) is fully determined on P. The bounded-
ness of Q(s) insures that H(k) converges (uniquely) to H.
STEADY STATE ANALYSIS
Define
t
v.(t) = [ p.(r,8)d~ + n(t)d.. (24)
3 Yo 3

In appendix B we verify that ¢%(T, t) is an honest probability
density for the joint random variables (X, T)t. Thus Yj(t) is

the marginal distributicn (as a function of t) for the random

variable X. 1In particular

v (t) = Prob .X. = 3i.

We wish to study the behavior of Yj(t) at equilibrium. That

is, we are interested in the limit

Y. = 1m ¥
j = Lm ()

20
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if it exists. Since

E ) t -W. (1) 25
vo(e) = | H(E-me I ar + (0. (25)
3 0 3 J

X we note that this is a convolution integral and proceed to apply
the method of Laplace transforms. Denoting the Laplace trans-
form of a function f(x) by f*(s), where

x

f*(s) = I e-sxf(x)dx
0

for real valued s, s =z 0, and using the convolution theorem of

Laplace transforms, equation (25) yields

" = u* *
vj(s) Hj(S)Ej(s), (26)

-W. (%)
where E;(s) is the Laplace transform of e J .
We now employ the well known Tauberian limit theorem which says

lim £(x) = lim s£*(s)
X~ S—-’O+

whenever one of the limits exists. Applying this to equation

{267 we have

ek

Y. = lim ¢ = § im B {

s-—‘

[T SV . e m e .
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In order to compute lim sﬂg(s) we go back to equation (21). Taking Laplace
s

transforms there (of the vector quantities) we get

H( ,=H(s)a(s) (28)

Multiplying by s and teking limits as s = @ yields

[ lim sH*(s)] =[ lim sﬁ*(s)] [lim Q"(s)} (29)
=" s—0 s—O*

. . . »
Since each element of Q {s) is some qij(s), where

& f -st .
.iJ(s) - J € qij(x)d-xl
0
i+t follows thet
(==
lim a” s) = a.., x)dx =
S-’o‘? ( ) .}0 ‘lj( ) qlJ

fror equaz.cn (17). Thus

22
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From the theory of Markov chains we know that there exists a vector

o m = ﬂl’ "2’ ceey v'.N

3 unique up to some positive factor such that

2
.
.

1]
-1
O

3 The vector 7 is just the limiting or steedy state probabilities for the Markov

chain defined by the stochastic matrix Q. Thus we must have

= lim SH*(S) (29
s=0

chis's

pCficiil e

up to some positive factor.

- . . * .
’ Tt now remains to evaluate Zl_mf E(s). Since
s~0

3 “W. ()
e 9 =1- P{t),

eI

T

23
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0

‘0

% = . PPaid

c-SLde(t) = sPi(s) - P,(0).
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Sutocituting this in the expression for FE(S) (noting -~hat Pj(O) = 0) we get

(31)

3l ke Liplt lere @s s~ d'is indeterminate, so we use L' Hospitzl's ryle. This

lim E#(s)
s-0 ¢

True tne limit yields the mean time

and T, are placed in equation (27)

lpa

ds

et]

spent in state Ej prior to transition. If t

we adJl

24

‘!‘ e™® “a.PJ(t)
0

left with Yj

[3

7.1,
5 J

(32)

3

up to a constant

see s s e e - T AT S e AN I e g 2 REHRE




factor. Normalizing we have

T ravre T

¥, = € 9 (33)

Eremohae rTER? 2o

Thus the steady state probability of being in Ej is essentially

R L

the probability nj of being in Ej of the imbedded Markov chain

given by Q but weighted by the expected waiting times in each

=

state. Furthermore we note the independence cof ¥. with respect

IRt L e 2

to the initial condition @. It is also evident that ¥. is inde-
pendent of any of the specific waiting time distributions. We

need only know the mean waiting time ti'

( We can alsc calculate the steady state value of ﬂj(T,t),

that is,

¢J(T) = -};12 ¢j(T: t)’

g

arae o s o S e e = .
H

¥

-
i::

WF TR e TR S




By equation (8) we get

(up to a constant factor). Upon normalizing we get

£.(7) = —“""““i’. (34)

Thus at sready state the probability of being in Ejforexactlythe
last - units of time is just the equilibrium probability ﬁj of
being in Ej of the imbedded Markov chain times the probability

of remaining in Ej for at least 7 units of time.

We note here that since

ihw *wj(T)

. e a7 = T,
0 J

26
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then
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e
Co

I
-
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j= 7
-

Gt

as we shounld expect.

prrr e ot cum

FIRST PASSAGE AND RECURRENCE DISTRIBUTIONS
Let rij(t) be the probability density function for first
passage measured from the moment the process enters Ei until it

first enters Ej. In particular then, rii(t) is the probability

density for the recurrence time of state Ei' We will show that

o v o2
F rij(‘) = 7 Ay tik(s)rkj(t - s)ds + qij(t), (35)
k#3 0 i

; Indeed, there are two ways that the process can first arrive at

Ej at time t, having entered Ei at t = 0. Either thHe process re-
mained in Ei for a time s, and left for Ey whence it took t - s
units of time to first get to Ej or the process remained in Ei
for the whole time t at which point it jumped to Ej. The integral
in equaticn (33) reflects the former possibility. Since the condi-
tional waiting time in Ei before transfer to Ek is independent of
tre first passage time from E_ to Ej the integral in equation {(35)

{o

27




S S

v T
JE O S

e

B tpmate

PP S o o an DR S L sy P doe TARENI VA e g AR T T B

LanATENL b ST S R T -

is the probability density function {cr the time t of first
passage via the route Ei to Ek to Ej' Since we can make all of
these transitions (through Ek) we must weight them according to
their eventual likelihood of occurrence, namely the qij's. The
latter possibility for first passage to Ej at time t is represented
by the unconditional probability qij(t)°

The expected first passage time ;ij can ke shown to satisfy

the following equation for all 1 < i, j < N.

3 r ) +q,. -‘E .
Wy WD (36)

An exact derivation of eguatiorn (36) is presented in appendix A.
At this point we give a heuristic procf of equation (36).

Sur;ose the process enters Ei at time £t = 0. At this point
a cholice is made as to what elementary state the process jumps
to next. Suppose the successor 1is Ek where k¥ ¥ j. Then the pro-
cess waits in Ei for an expected time gik before going to Ek'
Since the waiting time in Ei is independent of the first pas-
sage time from Ek to Ej' the expected time from entry to Ei until
first entry to Ej is tik + rkj' But the choice of Ek is deter-

mired by the prcbabilities Dy So we weight the times Eﬁk + rkj

28
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accordingly as in the first term on the r.h.s. of equation (38).
The last term of equation (35) results from the choice to wait

in Ei and go to E-i directly without passing through any inter-

vening elementary states Ek' This waiting time, t.. is also

weighed accordingly.

Substituting Ei for z qijtik' we have from equation (36)

that k#1

X#,j = (37)

We are primarily interested in obtaining the expected recur-

rence time ;ii for 1 s 1 < N. This is simplified by putting

equation (37) in matrix notation. Letting R dencte the matrix

of terms rij and T the diagonal matrix of the ti's. we get

R=Q(3-RD)+T

where RD is obtained from R by replacing the off diagonal elements

n we get

Ry = Q- I)Ro + T (38)

29
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Now multiply both sides of equation (38) by n, the vector of
steady state probabilities for the imbedded Marko' process, ard

we get vRD = «T. Then solving for ;ii we have

N
T - L1 j -7 (:9)
11T T, L k%
Vo
39

T T T T R T T R T N R Ty or e T A semmAe s




APPENDIX A

DERIVATION OF THE EXPECTED FTRST PASSAGE TIMES

By definition.

&0
- r
» = t ( .
oy J-w rm\t)dt.
Then from equation (37)
— n® T (‘m pw
Tig = t[ 2 G4 tik(s)rkj(t - s)ds | 4t o Yy
-0 I -0 -t
k7J
b .
— v < - <+ 3 g
= } %y | . tik(s)[‘j‘m trkj(u s)du:l ds + qijtij
K4
rCD (‘:9
= + . .
.. 95 J-ca tik(s)[J_m (s + x)rkj(x)dx] ds qutiJ

A -

{where we have made the chanze of variables x = + - 5)

A-1

L —— e o e —
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= )9 J-co [stik(s) + ~kjtik(s)] ds + q. .U
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. using eguation (19) <o evaluate i.k.
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3 PROOF THAT gj (t, t) IS A PROBABILITY DENSITY

In order to show that dj(¢, t) is an "honest" joint proba-

bility density for the random variable (X, T)t' we must prove

5\ (1) ¢j(7: t) 20
3
2 for all j =1, 2, ..., Nand all.r, 0 s r 3 t, and
N ¢ N
1) Y [ par+ e ¥ op, = 1.
R L3
j=1 j=1

To prove (i) we consider equation (23) for any fixed t = t

. o

[ L T
P T i I it 4 L7

We first show that the vector H(t) = 0, i.e., has all non-nega-

tive components. Now by definition of the matrix Q(s), each

: entry is non-negative, hence Q(s) = 0. Since

5:

:

1 H(O)(t) =¢z0

:

§ then by equation (22), H(l)(t) 2 0. Similarly from equation (23)
|

: we see that H(k)(t) 2 0 implies that H(k+l)(t) z 0.

%
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It then follows from the uniform convergence of H( ) to

Hon (0,t] that H(t) =2 0. Since each Hj(t) z 0 then

. -WJ(T) \
¢j("r, t) = Hj(t - T)e z 0.

For (ii) we define the function

t
g = r
Yj(t) Jo ﬁj(T,t)dT + n(t)ﬂj.

Then substitution for ¢j (7,t) from equation (8) and (10),we get

?t -, (-, - V) 'S
‘x’J LY = Jc { ':Z i (s, v)wij(s)ds + 5(v)¢j}dv + 1'|(t)¢‘j
W ~‘.-.'j(-t - V) — v
= "o e ‘3)2‘ Jo ¢i(s, v)wij(s)ds} dv ”‘(t)‘%'
i#J

B.-2
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&
.




4L ?
R o e

4

(o pcamass 8

e e

BNy SR Ter N e

AT
-

TrE P

T

Frew ; e N R T AU arTh AT €
T S Ve —— o PR Rt e N N LT RN T ¢

Taking derivatives with respect to t yields

t W.(t - v)
‘i" Y = - r roq r}a J .
j(i) Jo kJ(t - v)o {:L
i

IZ By (s, V)"ij(S)d;} dv
S

+ Zd J ¢i(5: t)Wij(s)ds.
id; ©

We can introduce the term n(v)ﬁj into the first integral (with

respect to v) without changing its value. Then

]

- at -'.'I.(t-v)

U./L\ v

PLNY) oy WAt - v)e I VT

J J J( ) e { 2 4, ¢i(s’ v)wij(s)ds +‘n(v)¢j o

vy '

ot
", ] Bls vy (o).
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" we replace the term in brackets by Hj(v) we are left with

ot W {t-v) - ot
Ul Y Y - » < o I3
Yj(;) = Jo uj( L - v)e Hj(v)dv ) ¢i(s, t)wij(s)d

if; ©

= -, w(t-v)pt-v, t)av+ > . $.(s, t)w, .(s)ds.
. v J s . ES 1iJ
o) ',éJ 0

dakirg z change of variables Iin the first integral we get

<

vi(e) = - P (s, t)wfs)ds + . g.(s, L)wij(s)ds-

i
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Summing over all states j we have
N N | .
P - at ™ — f.b ,
Y l’3(t) = - 7 4 ¢J(s, t)wj(s)ds R ACE t)"ij(s)ds
j=1 =1 O i1 i
N i .
= - ), B(s, 8)  wyls)as s Alss v (sus
- — - — -t 0 i % .
1 © 1 51 144
i . i R
_— Py - — At
= - ! ¢.(S, t)w,,_(s)ds + . ¢’_(S, t)w; :(s)ds
— - ':C J J:\ , :.O 2 L
J=1 k#S =1 1=
= Q.
?‘ Obsexve that
éz: <
H v} I
ko ) Yj(o)s ). ¢j = 1,
: J=1 j=1
B-5
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hence

2l

n

L
Y (L) =
/ J( ) =1

J=

> But this is just the statemenc (ii) we wished

for axl £ > 0.

to prove.
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